
 Parallel OCR Error Correction

G. Narender#1, Dr.Meda Srinivasa Rao*2
#Research Scholar, Associate Professor, Department of CSE,
Keshav Memorial Institute of Technology, Hyderabad, India.

*Professor&Director, School of Information Technology,

JNTUH, Hyderabad

Abstract— Optical Character Recognition or OCR is the
process that recognizes alpha numerical characters on printed
pages and converts them to a machine-readable text file. OCR
makes it possible to digitize books and other printed materials.
Our current research work is investigating ways to speed up
implementation of digital libraries. Multicore systems are now
becoming common on desktops, servers and even laptops. In
order to take full advantage of such multicore systems, current
research is looking at ways to make parallel programming
main stream. One such effort is the Intel Cilk Plus extensions
to C and C++ from Intel Corporation that offer a quick, easy
and reliable way to improve the performance of programs on
multicore processors. In this paper, we present the results
from our work using the Cilk Plus extensions to parallelize
OCR error correction.

Keywords— OCR, digital Library.

I. INTRODUCTION

A digital library is a library where collections are stored
in digital format as opposed to print, microform, or other
media. The collections are accessible via computers [1].
The digital content may be stored locally, or accessed
remotely via computer networks. A digital library is a type
of information retrieval system. OCR plays an important
role in digitizing books and other printed material. The
effectiveness of OCR is dependent on the quality of the
scanned image. OCR may also not be effective on hand
written manuscripts, or when using cursive scripts. Once a
OCR processing system digitizes a print document into a
set of words, OCR error correction aims to correct “non-
word errors”. There are several approaches to OCR error
correction and a brief survey of these methods can be found
in [2]. Most OCR correction methods that involve language
models work on a word level. OCR correction methods rely
primarily on spell checkers to correct words that do not
appear in the given lexicon [3].

[4] describes a statistical approach to OCR error
correction by making use of character misrecognition
probabilities with the aim of improving the accuracy of
OCR error correction. Recent work in this area has tried to
make use of Google Web 1T 5-gram data set as a dictionary
of words to spell-check OCR text [5]. [5] also proposes
parallelizing the algorithm for future work to take
advantage of parallel architectures.

Work in the area of OCR error correction has also
focused on the evaluation of error correction systems to
measure an OCR error correction system performance. [6]

focuses on a consistent set of metrics for evaluation of an
OCR error correction system.

Word recognition errors can broadly be classified into

two categories:
(1) Character mis-recognition errors – as an example

the letter 't' the word 'catch' may be recognized as 'k' leading
to the word error 'cakch'

(2) Character omission errors – some characters may
be omitted at the beginning or the ending of a word. The
omission of 'h' in the word 'reach' may be recognized as the
word error 'reac'.

OCR error correction aims to correct the list of mis-
recognized words by comparing them against known words
in the dictionary. In this paper we have focused on
correction of word recognition errors and parallelizing the
error correction algorithms using Intel Cilk Plus. There has
been some work done in the area of parallelizing OCR [7].
As far as we know, ours is the first effort in parallelizing
OCR error correction using Cilk Plus.

Section 2 provides a brief introduction to Intel Cilk Plus.
Section 3 describes our algorithm for the non-parallel OCR
error correction for the two kinds of word errors. Section 4
describes our effort to parallelize these algorithms using
Intel Cilk Plus. We give the results of our work in section 5
and conclusions and scope for future work in section 6.We
give a sample of the error correction results in Appendix A.

II. INTRODUCTION TO CILK PLUS

 Intel Cilk Plus provides extensions to C and C++
languages that offer an easy and reliable way to improve the
performance of programs on multicore processors [8].
Three Intel Cilk Plus keywords provide a simple model for
parallel programming. Intel Cilk Plus allows us to write
parallel programs using a simple model with only three new
keywords to learn. This allows C and C++ developers to
move quickly into the parallel programming domain. The
three new supported keywords are: _Cilk_for,_Cilk_spawn
and _Cilk_sync. The header file <cilk/cilk.h> defines
macros that provide names with simpler conventions
(cilk_for, cilk_spawn and cilk_sync).

A cilk_for loop allows loop iterations to run in parallel
and is a replacement for the normal C or C++ for loop. The
general cilk_for syntax is:

 cilk_for (declaration;
 conditional expression;
 increment expression)

G. Narender et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (6), 2012,5301-5303

www.ijcsit.com 5301

As an example given the following code, the Cilk
runtime system can choose to run different iterations of the
loop in parallel.

 cilk_for (int index = 0; index < 1000; index++)
 func(index);
The cilk_spawn keyword is used with a function call and

is used to indicate to the Cilk runtime system that the
function call can be run in parallel with the caller

As an example, in the following code, the call to function

call1() can run in parallel with other code. The spawned
function is usually referred to as the child and the caller is
referred to as the parent.

 void caller() {
 cilk_spawn call1();
 other_code;
 }

The use of a cilk_sync statement in a function indicates

that the current function cannot continue in parallel with its
spawned children. The function needs to wait until all the
spawned children complete execution before it can continue
further.

As an example, in the following code, the parent function
caller2 can only start executing the function call to call4
only after the spawned call to call2() completes execution.

 void caller2() {
 cilk_spawn call2();
 call3();
 cilk_sync;
 call4();
 }

III. OCR ERROR CORRECTION

In order to test the effectiveness of using the Cilk Plus
keywords to parallelize OCR error correction, we started
out by implementing two non-parallel or serial algorithms
for fixing the two types of errors mentioned earlier.

A. Correcting of OCR Character Misrecognition errors

The When OCR misrecognizes a character in a word, the
number of characters in the word does not change. We take
advantage of this fact by comparing only against known
words in our dictionary that have the same length as the
misrecognized word. If we assume that n character
misrecognitions can occur, the algorithm works as follows:

 for (index = 0; index < number_of_misrecognized_words;
index++) {

 err_word = error_word[index];
 word_len = strlen(err_word);

 wordp = word_table_by_length[word_len];
 while (wordp) {
 tword = wordp->word;

 num_mismatch = 0;
 for (tindex = 0; tindex < word_len; tindex++) {
 if (err_word[tindex] != tword[tindex]) {
 num_mismatch++;
 }

 if (num_mismatch > n) {
 break;
 }
 }

 if (num_mismatch == n) {
 add tword as a possible correction choice for

err_word;
 }

 wordp = wordp->next;
 }
 }

B. Correction of OCR Character Omission Errors

When OCR misses recognizing some characters
altogether at either the beginning or at the end of a word,
we have character omission errors. If the recognized error
word has length len and we assume n characters were
omitted, we only need to compare against known words in
our dictionary that have length len + n. The algorithm
works as follows:

 for (index = 0; index <

number_of_misrecognized_words; index++) {
 err_word = error_word[index];
 word_len = strlen(err_word);

 wordp = word_table_by_length[word_len + n]
 while (wordp) {
 tword = wordp->word;

 if (strcmp(err_word, tword + n) == 0 ||
 strncmp(err_word, tword, word_len) == 0)

{
 add tword as a possible correction choice

for err_word;
 }

 wordp = wordp->next;
 }
 }

IV. PARALLEL OCR ERROR CORRECTION

For our initial work, we chose to parallelize OCR error
correction by making use of the cilk_for keyword. The
parallel OCR error correction implementation was a matter
of simply replacing the for

loop that iterates over all the error words with cilk_for as
shown below:

cilk_for(index=0;index<number_of_misrecognized_wor
ds; index++) {
 run ocr_character_misrecognition correction
 }

cilk_for(index=0;index<number_of_misrecognized_words;
index++) {

 run ocr_character_omission correction
 }

G. Narender et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (6), 2012,5301-5303

www.ijcsit.com 5302

V. RESULTS

 In order to measure the speedup from the parallel
implementation using cilk_for, we used the Intel C++ v13.0
beta compiler. We started out using a dictionary containing
about 58000 words. We then built up a list of about 120000
error words by randomly picking a word in the dictionary
and arbitrarily introducing character mis-recognition or
omission errors. We then ran the serial and parallel versions
of the error correction algorithms on a system with Intel
core i5-2450 processor and 6 GB of memory which can run
up to four threads in parallel. We ran the program five times
and collected the average of the time in seconds it took to
do the error correction. Our measurements showed an
average speedup of 3 when running the parallel version by
simply using the cilk_for keyword in place of the for
keyword. This demonstrated the ease and effectiveness of
using Cilk Plus in parallelizing applications.

VI. CONCLUSIONS AND FUTURE WORK

 Our work has demonstrated the usefulness of Intel Cilk
Plus for parallelizing OCR error correction. We were able
to demonstrate a significant speedup in the error correction
algorithm by simply resorting to the use of the cilk_for
keyword. For future work, we plan to investigate using the
cilk_spawn/cilk_sync keywords to speedup OCR error
correction. As an example, the character misrecognition and
omission error correction can be run in parallel using
cilk_spawn. We also plan to investigate using Cilk Plus
extensions further to speed up other algorithms useful for
the implementation of digital libraries.

REFERENCES
[1] Greenstein, Daniel I., Thorin, Suzanne Elizabeth. The Digital

Library: A Biography, published by Digital Library Federation
(2002), Pages 1-76.

[2] Steven M. Beitzel, Eric C. Jensen, Davis A. Grossman. Retrieving
OCR Text: A Survey of Current Approaches, Symposium on
Document Image Understanding Technologies (2003).

[3] Eugene Borovikov, Ilya Zavorin, Mark Turner. A Filter Based Post-
OCR Accuracy Boost System. Proceedings of workshop on
Hardcopy Document Processing (2004), Pages 23-28.

[4] Xiang Tong, David A. Evans. A Statistical Approach to Automatic
OCR Error Correction In Context. Proceedings of the Fourth
Workshop on Very Large Corporations (1996), Pages 88-100.

[5] Youssef Bassil, Mohammad Alwani. OCR Context-Sensitive Error
Correction Based on Google Web 1T 5-Gram Data Set. American
Journal of Scientific Research, ISSN 1450-223X Issue 50 (2012).

[6] Martin Reynaert. All, and only, the errors: more complete and
consistent spelling and OCR-error correction evaluation. The
International Conference on Language Resources and Evaluation
(2008), Pages 1867-1872.

[7] E. Montesinos, J. Kienhofer. Parallelizing OCR. Computers and
Communication Conference (1991), Pages 46-52.

[8] http://software.intel.com/en-us/articles/intel-cilk-plus/

APPENDIX-A

Sample of Single Character-Misrecognition Error
Correction

Correction choices for: hotpnate
 hotplate
Correction choices for: fawb
 fawn
Correction choices for: valsifying
 falsifying
Correction choices for: mobcters
 mobsters
Correction choices for: addicqiveness
 addictiveness
Correction choices for: clarsics
 classics
Correction choices for: helmkts
 helmets
Correction choices for: globrlar
 Globular

Sample of Single Character-Omission Error Correction

Correction choices for: anipulable
 manipulable
Correction choices for: oinery
 joinery
Correction choices for: xpressionless
 expressionless
Correction choices for: envoy
 envoys
Correction choices for: entrally
 centrally
 ventrally
Correction choices for: grovelle
 grovelled
 groveller
Correction choices for: lic
 lice
 lick
Correction choices for: eer
 beer
 deer
 eery
 jeer
 leer
 peer
 seer
 veer

G. Narender et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (6), 2012,5301-5303

www.ijcsit.com 5303

